Resonances for the Laplacian on Riemannian Symmetric Spaces: the Case of Sl(3,r)/so(3)
نویسنده
چکیده
We show that the resolvent of the Laplacian on SL(3,R)/SO(3) can be lifted to a meromorphic function on a Riemann surface which is a branched covering of C. The poles of this function are called the resonances of the Laplacian. We determine all resonances and show that the corresponding residue operators are given by convolution with spherical functions parameterized by the resonances. The ranges of these operators are infinite dimensional irreducible SL(3,R)-representations. We determine their Langlands parameters and wave front sets. Also, we show that precisely one of these representations is unitarizable. Alternatively, they are given by the differential equations which determine the image of the Poisson transform associated with the resonance.
منابع مشابه
On a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملAnalytic Continuation of the Resolvent of the Laplacian on Sl(3)/ So(3)
In this paper we continue our program of extending the methods of geometric scattering theory to encompass the analysis of the Laplacian on symmetric spaces of rank greater than one and their geometric perturbations. In our previous work [9] we described the resolvent, and specifically the asymptotic behavior of the Green’s function, on SL(3)/ SO(3) using methods from three-particle scattering....
متن کاملScattering Theory on Sl(3)/ So(3): Connections with Quantum 3-body Scattering
In this paper we continue our program of extending the methods of geometric scattering theory to encompass the analysis of the Laplacian on symmetric spaces of rank greater than one and their geometric perturbations. Our goal here is to explain how analysis of the Laplacian on the globally symmetric space SL(3,R)/ SO(3,R) is very closed related to quantum threebody scattering. In particular, we...
متن کاملContinuation of the Resolvent
In this paper we continue our program of extending the methods of geometric scattering theory to encompass the analysis of the Laplacian on symmetric spaces of rank greater than one and their geometric perturbations. In our previous work [9] we described the resolvent, and specifically the asymptotic behavior of the Green’s function, on SL(3)/ SO(3) using methods from three-particle scattering....
متن کاملAnalytic Continuation of the Resolvent
In this paper we continue our program of extending the methods of geometric scattering theory to encompass the analysis of the Laplacian on symmetric spaces of rank greater than one and their geometric perturbations. In our previous work [9] we described the resolvent, and specifically the asymptotic behavior of the Green’s function, on SL(3)/ SO(3) using methods from three-particle scattering....
متن کامل